
The ACSTAB Table
The ACSTAB table is subdivided into the four subtables ACSDEF, ACSTBL, ACSSCHC and
TPFXTAB.

The ACSTAB always starts with the macro ACSSTART, which is required for every ACSTAB.
ACSSTART must be the first entry in every ACSTAB.

Thischapter covers the following topics:

ACSDEF Subtable

ACSTBL Subtable

ACSSCHC Subtable (CICS only)

TPFXTAB Subtable

Passing Data

Overriding Information

ACSDEF Subtable
The ACSDEF subtable describes the default values of the system, and defines data used by the host node.
These include:

The host node ID (DBID);

The name of the Adabas TPF host driver program (APPLID);

The name of the continuation transaction (TRANSID);

The name of the program which invokes the Adabas SVC for communication with the target
system (Adabas).

The ACSDEF subtable is only needed if either:

CICS is the host system, or

for any other system if the size of the format buffer is to be increased to a value higher than the
default 3840 bytes.

ACSDEF must be unique for each CICS host system. If you are running Adabas TPF on two CICS you
need two ACSTABs, each with a different ACSDEF subtable.

The following parameters can be specified with the ACSDEFLT macro, which describes the ACSDEF
subtable:

1

The ACSTAB TableThe ACSTAB Table

Parameter Meaning

DBID This is the 1 byte value representing the pseudo-DBID to be used to identify
the CICS host system. As default, use DBID 127.

TRANSID This is the 4 byte character string representing the transaction name to be
used by the TPF component for internal continuation. As default, use the
trans ID "XT46". If you use a different TRANSID, it must be defined in the
PCT or with CEDA.

APPLID This is the 8 byte character string representing the module name of the CICS
driver that is invoked with the Reverse Access call (SCALL). The Reverse
Access call is described in the chapter on transparency in this
documentation.

CONTID This is the 4 byte character string representing the transaction name to be
used by TPF for the Reverse Access call (SCALL). The Reverse Access call
is described later in this documentation.

Adabas This is the 8 byte character string representing the name of the module to be
loaded that performs the link to Adabas (this module must reside in the
CICS loadlib).

FORMATSZ This is the 2 byte character string representing the value for the format
buffer size. The default format buffer size is: {(lines x columns) x 2}; for
example, (24 x 80) x 2=3840. If you wish to increase the size of the format
buffer because of large Natural screens or Reverse Access, you can increase
the value here. The maximum value is 32k bytes, otherwise the assembler
returns a high return code. No value of less than 3840 is accepted. If you
specify a lower value, it is overridden by the default value 3840. If this
parameter is required, then the subtable ACSDEF must be specified for all
host systems.

PSEUDO YES or NO, indicating whether CICS processing should be
pseudo-conversational or not.

ACSTBL Subtable
The ACSTBL subtable contains a list of target systems available for communication with the various host
systems. The table provides a cross-reference of node names to node numbers. Routing requests made to
the Adabas TPF task are evaluated according to the contents of this table. For each target system you wish
to communicate with Adabas TPF, you need one ACSTABLE macro with its parameters.

The following parameters can be specified with the macro ACSTABLE which describes the ACSTBL
subtable:

2

ACSTBL SubtableThe ACSTAB Table

Parameter Meaning

DEST This is the 8 byte character string that is used to identify the Com-plete target
node. For access to a target node from a batch job this must be ‘‘BATCH".

NODEID This is the 2 byte value equivalent of the DBID for use with the Adabas
SVC. Use the value you specified for the sysparm ACCESS-ID in the target
system.

SVC This is the one byte value equivalent to the Network Router (Adabas SVC).
Use the value you specified for the sysparm ACCESS-SVC in the target
system. This parameter only has meaning with DEST=BATCH.

MENU Specifies whether a menu showing all valid destinations is to be displayed
under the following circumstances: If the TPF driver was entered directly
(that is, bypassing the transparency feature), then if no destination is
specified (or the specifies destination is not found), then the menu of all
valid destinations is displayed by the TPF terminal task.

COMMENT This is the 50 byte character string the TPF terminal task displays in MENU
mode for each destination.

ACSSCHC Subtable (CICS only)
This subtable is called the screen-to-hardcopy table. The subtable is only needed if you use the
screen-to-hardcopy function under TPF. The screen-to-hardcopy function is only available for CICS. One
ACSHARDC statement must be specified for each terminal and its assigned printer.

The following parameters can be specified with macro ACSHARDC, which describes the ACSSCHC
subtable:

Parameter Meaning

TERMID This is the 4 byte character string used to identify the terminal ID.

SCHCNR This is the 4 byte character string used to identify the terminal ID of the
destination hardcopy printer.

TPFXTAB Subtable
This subtable is called the Adabas TPF Transparency table. The purpose of Adabas TPF transparency is to
provide an automatic method of integrating Adabas TPF in an existing Natural CICS/TSO installation,
and to provide an easy method of implementing new user transactions that invoke Com-plete.

With the user transactions, the startup of a Adabas TPF session is very simple for the user. Every user can
be routed to his working environment (Natural) directly, or he can select a transaction that first displays
the Com-plete USTACK menu, from which the user can start the required program.

The macro USERDEF describes the TPFXTAB subtable. There are four types of USERDEF statements:
GLOBAL, GROUP, TRAN and END. These are described in detail below. The format of a USERDEF
macro statement is:

3

The ACSTAB TableACSSCHC Subtable (CICS only)

USERDEF type,keyword parameters

USERDEF GLOBAL:
All keyword parameters have installation defaults that can be overridden by a USERDEF
GLOBAL statement. When assembly of the table begins and a USERDEF GLOBAL statement is
encountered, the values specified for the keyword parameters on that statement become the global
defaults for the rest of the assembly, or until a subsequent USERDEF GLOBAL statement
provides new defaults. GLOBAL-type USERDEF statements are optional, and are usually used to
establish values that are consistent for most transactions, such as NODEID. Note that if a keyword
parameter specified on a USERDEF GLOBAL statement is not specified on a subsequent
USERDEF statement, it retains the specified value.

USERDEF GROUP:
This type of USERDEF statement is optional and specifies a group of terminals or users within the
TPFXTAB to which the specified keyword parameter values are to apply. The specified values
override the USERDEF GLOBAL specifications. The values are valid until another GROUP or
GLOBAL statement is encountered. Note that if a keyword parameter specified on one USERDEF
GROUP statement is not specified on a subsequent USERDEF GROUP statement, it reverts to its
original global value (as set by either a previous USERDEF GLOBAL statement or the installation
default).

USERDEF TRAN:
The USERDEF TRAN statement is the only statement that actually generates a table entry. This
means that at least one USERDEF TRAN statement is required, and one statement must exist for
each transaction that can use the transfer program. The table entry is generated using the keyword
parameters explicitly specified. If a parameter is not specified on a USERDEF TRAN statement,
the value is determined according to the following hierarchy: first the current GROUP value is
searched; if not found, the current GLOBAL value is searched; if not found, the installation default
is assumed.

A USERDEF TRAN statement is preceded by a 1-4 character name field that specifies the
transaction ID to which the table entry is to apply. For CICS, the transaction ID is the actual
transaction ID that invokes the transaction. If a valid CICS transaction ID is called which invokes
the transfer program, but which has no entry in the TPFXTAB subtable, then the parameters
specified for the first transaction entry in TPFXTAB are taken.

USERDEF END:
The USERDEF END statement is required as the last USERDEF statement in the TPFXTAB
subtable.

Example:

Following is an example of a TPFXTAB subtable generation:

 USERDEF GLOBAL,NODEID=COMXX,USERID=OPID
 TPFPGM=NAT21,ACSPGM=ACCESS46
ATPF USERDEF TRAN
BTPF USERDEF TRAN,TPFPGM=NAT22,DATA=’string1’
 USERDEF GROUP,TPFPGM=TESTNAT
PAYQ USERDEF TRAN,DATA=’string2’
PRTK USERDEF TRAN,DATA=’string3’
 USERDEF END
 END

4

TPFXTAB SubtableThe ACSTAB Table

The table definition provides four transactions: ATPF, BTPF, PAYQ and PRTK.

The transaction ATPF follows all of the rules specified in the GLOBAL statement; the node ID is
COMXX, the user ID is taken from the CICS OPID, the program invoked first on the target side is
NAT21, and the name of the TPF ACCESS program is ACCESS46.

The transaction BTPF also follows the rules specified in the GLOBAL statement, but it invokes
program NAT22 on the target side and passes data to it.

The transaction PAYQ belongs to a group, where the program TESTNAT is invoked, to which
data string2 is passed.

The description of PAYQ also applies to transaction PRTK, except that different data is passed to
the TESTNAT program.

The keyword parameters available for the USERDEF statements are described in the following
subsections.

NODEID Parameter

This parameter indicates how the name of the Com-plete node is to be determined for the
transaction. This node name must be defined in the ACSTBL subtable.

Possible values for the NODEID parameter are:

Value Meaning

REQ Node ID must be specified via screen input (see section
Overriding Information later in this chapter).

(DEFLT,name)Use specified name as default node ID.

(ALWAYS,name) Always use name as node ID.

name Node ID to be used.

EXIT Use user exit to determine node ID. For more information,
see the section Exits for TPF in this chapter.

USERID Parameter

The USERID parameter indicates how the TPFXFER program is to determine the user’s
TPF LOGON ID when logging the user on to the associated transaction. A valid user ID
must be specified, either on the TRAN statement or on a previous GLOBAL statement;
if no valid user ID is specified, an assembly error occurs. One option is to hard-code a
value for the transaction. This would mean that every time the given transaction is
invoked, ACCESS attempts to log on to Adabas TPF using that ID.

Possible values are:

5

The ACSTAB TableTPFXTAB Subtable

Value Meaning

REQ User ID must be specified via screen input (see section
Overriding Information later in this chapter).

EXIT Use user exit to determine user ID (CICS only). For more
information, see the section Exits for TPF in this chapter.

(DEFLT,name)Use specified user ID as default.

(ALWAYS,name) Always use this user ID.

name se this user ID.

OPID se CICS OPID as user ID.

TERM se CICS TERMID as user ID.

USER Use CICS USERID as user ID. This is especially useful
when an external security system, such as RACF, is in
place.

For information on how user IDs are defined under Com-plete, see the section User ID
Considerations in the installation chapter.

Note that the password generated is always PASSWORD. If the user ID is defined in the
Com-plete system, this field must therefore be overwritten by means of screen input (see
the section Overriding Information below).

An exception to this is when USERID=USER is specified, when the generated password
is set to indicate that the password verification has already been performed by the host
system. In this case, if the target Com-plete system is running under the control of an
external security system, it will perform a logon without password verification.
If the target Com-plete system is not running with an external security system, the
password must be overwritten as described above.

It is not possible under Com-plete for a user to log on with the same user ID more than
once. Therefore, under CICS, you must take care when specifying USER=USER or
USER=OPID that two (or more) users do not logon with the same user ID. If this does
happen, however, the results are undefined, but the first user to log on with the ID will
probably be logged off, and the second user to log on with the ID is logged on.

TRANID Parameter

This specifies the CICS transaction associated with this entry. As default the label
specified on the statement is taken.

Note:
The label can only start with an alphabetic character, so if an alphanumeric transaction is
required, then this parameter must be specified.

TPFPGM Parameter

This parameter is used to indicate the name of a program to be invoked under Com-plete.
If the transfer program is being invoked by a 3GL front-end, it will use whatever name
was passed to it, overriding the TPFPGM value. This parameter is especially useful

6

TPFXTAB SubtableThe ACSTAB Table

when setting up a new transaction which does not use a 3GL front-end.

Possible values:

Value Meaning

name Name of the program to be invoked in the Com-plete target
system. Users are routed directly to this program, and when
they finish work with it, they are returned to the Adabas TPF
USTACK menu in TPF mode, from where they can select
new programs or logoff from Com-plete with the command
LOGOFF.

Notes: USTACK cannot be called directly in this format (that
is, TPFPGM=USTACK is invalid). The program name must
be defined on page 1 of the USTACK menu for this user,
otherwise access to it is denied.

(DCALL,name) Direct call in TPFPGM parameter USTACK menu The
direct-call, where name is the name of the program to be
called directly. When users finish work with this program,
they are returned to CICS or TSO, bypassing the Com-plete
USTACK menu. However, USTACK can be called in this
format: TPFPGM=(DCALL,USTACK). In this case, users
are routed to the USTACK menu in Standard mode.

<blank> If nothing is specified with the parameter TPFPGM on the
TRAN level and no GROUP or GLOBAL default is in place,
users are routed to the Com-plete menu of USTACK, from
where they can select one of the listed programs. When they
finish work with the selected program, they are returned to
the Com-plete USTACK menu, from where they can logoff
with the LOGOFF command.

Important:

The setting of the TPFPGM parameter can be overridden if you specify OVER=ALL
(see below). See also the section Overriding Information below.

ACSPGM Parameter

Specifies the name of the program to which TPFXF46 is to transfer control in order to
start up the Com-plete conversation. It simply indicates the proper name of the ACCESS
program. Typically, ACCESS46 is the default for this version.

The format of this parameter is:

ACSPGM=name

DATA Parameter

This parameter specifies data to be passed to the program specified by the TPFPGM
parameter, for example to pass data to Natural (optionally, this data can consist of the
escape character specified by the ESCCHAR parameter to indicate where user-specified

7

The ACSTAB TableTPFXTAB Subtable

data can be embedded.)

This parameter can also be used to define a string of data to be passed to a new
transaction which does not have a 3GL front end. The default is: all extra data is passed.

Possible values:

Value Meaning

string Data string is passed.

<blank> Specifies the escape character defined by the ESCCAR
parameter.

NO No data is passed.

For more information, see the section Passing Data.

ESCCAR Parameter

Defines an escape character associated with the DATA parameter. This character can be
used by the DATA parameter to allow embedding of user-specified data.

The format of this parameter is:

ESCCAR=char

The default is the paragraph sign §. See also the section Passing Data.

ENDCHAR Parameter

This parameter specifies a character which can be used internally by this macro in
evaluating the DATA parameter. This character cannot appear in the DATA string. The
only reason to ever override ENDCHAR is if the default period (full stop) "." appears
within a DATA parameter.

The format of this parameter is

ESCCAR=char

The default is the period (full stop) (.).

OVER Parameter

This parameter indicates whether items defined in the TPFXTAB subtable can be
overridden by screen input from the user. Up to two items can be specified, for example,
the notation OVER=(NODEID,DATA) means the NODEID and DATA parameters can
be overridden.

A password can be overridden unless OVER=NO has been specified. If a transaction has
OVER=NO defined, as well as DATA=NO, any data on the screen passed during an
XCTL is ignored by TPFXF46 (see also the section Overriding USERDEF
Parameters below).

8

TPFXTAB SubtableThe ACSTAB Table

Possible values include:

Value Meaning

NODEID User can override NODEID value.

USERID User can override USERID value.

DATA User can override DATA value.

ALL User can override all parameters.

NO User cannot override any parameter.

Default: OVER=NO

MODEL Parameter

This parameter specifies the name of a model user ID defined in the Com-plete target
system which will be used by the target system to generate the profile for this user. User
ID SYSCOM, which can be taken as a model user ID, is provided as default on the
supplied installation data set. Note that the MODEL user ID specified here must be
defined in the target Adabas TPF system.

If you specify a model user ID with the MODEL parameter, then the user ID used at
logon need not be defined in the target Com-plete system, that is, unkown user IDs can
log on to the target Com-plete system.

If the parameter MODEL is not specified, then APPLYMOD 57 must be set in the target
system to allow unknown user IDs to log on.

The format of the MODEL parameter is

MODEL=userid

There is no default.

Specifying MODEL=NONE forces no generation of the model user ID parameter. You
can use this to override a global MODEL specification for a single application.

See also the User ID Considerations section in this chapter.

Passing Data
Data passed to the target program is constructed using the DATA and ESCCHAR parameters associated
with a transaction, as well as input data from the screen, or data passed to TPFXFER as part of transfer of
control.

A DATA parameter specifies the string of data to be passed to the target program. The data consists of a
string of characters enclosed by single quotation marks, for example:

DATA=’STACK=(LOGON SASAK)’

9

The ACSTAB TablePassing Data

A transaction defined with such a parameter always passes the indicated data to the target program. One of
the characters within the data string can be the escape character "at" sign (@), for example:

DATA=’STACK=(LOGON SASAK;@)’

The escape character is a place holder, where any data passed to TPFXFER is placed before it is passed to
the target program. For example, if the user follows the transaction ID with the characters LOOKUP, then
the data passed to the target program is:

DATA=’STACK=(LOGON SASAK;LOOKUP)’

If the escape character appears more than once within a given data string, then only the first occurrence is
replaced with the input data. If no input data is provided, the escape character is simply removed from the
string passed to the target program.

The default DATA parameter value is "@" (at sign), which means that the string passed to the target
program is the data provided by the user, or by the program that invokes TPFXFER.

If the "at" sign itself needs to be embedded in a DATA string, the ESCCHAR parameter can be used to
change the escape character. Note that the DATA string is actually evaluated while the USERDEF
statement in which it appears is being processed, during the creation of the TPFXTAB subtable. This
means that the ESCCHAR value is the escape character currently in effect.

The following example illustrates this:

 USERDEF GLOBAL,DATA=’A$B*C,ESCCHAR=’$’
 data is ’A$B*C’, ESCCHAR is $
MERC USERDEF TRAN,ESCCHAR=’*’
 data is ’A$B*C’, ESCCHAR is ’*’
 AREC USERDEF TRAN,DATA=’D$E’
 data is ’D$E’, ESCCHAR is ’$’

In this example, the DATA parameter associated with the MERC transaction is "A$B*C". In this case, the
escape character is "$", since this is the value of the ESCCHAR parameter when the DATA statement was
specified. The DATA string for the AREC transaction is "D$E", and the escape character is again "$".

If no data is to be passed to the target program, specify DATA=NO.

The maximum length of the data which can be passed to the target program depends on the construct used
to send it:

1. Using the construct:

TPFPGM=(DCALL,pgmname),DATA=<data>

the maximum length of data is 240 bytes.

2. Using the construct:

TPFPGM=pgmname,DATA=<data>

the maximum length of data is 160 bytes.

10

Passing DataThe ACSTAB Table

Overriding Information
A user or programmer can override the parameters set in the TPFXTAB subtable by overriding them with
screen input. The purpose of these overrides is to simplify certain testing situations, for example when a
test system exists on a separate node from a production system, or if certain user IDs are handled
differently on the target system.

Override authorization and for which transaction(s) it is valid is defined by the OVER parameter in the
TPFXTAB subtable.

If some overriding information is to be specified as screen input, certain points must be noted and certain
conventions must be followed:

When transparency program TPFXF46 is invoked directly using a transaction associated with it -
for CICS - in the PCT, any data following the transaction ID on the screen is processed by
TPFXF46.

The data processed by TPFXF46 when it is invoked via a NATCICS-type XCTL is the string of
data specified as part of the NAT CICS parameter.

Overrides can be specified by preceding any data with override information, surrounded by
parentheses, listed in the following order:

tranid (nodeid,userid,password,systemdata)userdata or
tranid (nodeid,userid,password,systemdata) userdata

where:

systemdata is the name of the program to be invoked directly.
userdata is the data to be passed to the program to be invoked.

For example:

atpf (tpf46,admin46,admin,nat21) fuser=(9,81)

Note that if the direct-call option is specified in the table for the transaction for which you override the
program name, the direct-call remains in effect (see explanation of the TPFPGM parameter above).

If any parameter you are allowed to override is omitted within the parentheses, it must be substituted by a
comma as placeholder. The value for the omitted parameter is then taken from the TPFXTAB subtable.

Examples:

tranid (,userid,password,systemdata) userdata
tranid (,,password,systemdata) userdata
tranid (,,,systemdata) userdata

Exceptions:

1. If only nodeid is specified to be overridden (OVER=NODEID) and you override it, no placeholder
commas are required, for example:

11

The ACSTAB TableOverriding Information

tranid (nodeid)

2. If everything can be overridden (OVER=ALL), but you do not wish to override the systemdata, no
placeholder comma is required for the systemdata operand, for example:

 tranid (,,password) userdata

3. If you can override systemdata and userdata, but you do not wish to, no placeholder commas are
required, for example

tranid (,,password)

If you have specified the parameter OVER=ALL in the TPFXTAB subtable, you can
override the TPFPGM with your screen input. If you override the program name using
screen input, it is treated as if it was in the table for this transaction as follows:

If it was specified as a direct-call in the table, you are directed straight to the program, and
when you finish with the program, you are returned to your host environment (CICS or
TSO);

If it was not specified as direct-call in the table, (simply TPFPGM=prog1) and is to be
overridden with prog2, then prog2is called directly. However, on finishing, you will see
the Com-plete mode menu of USTACK, from where you can select any listed program, or
log off using the LOGOFF command.

12

Overriding InformationThe ACSTAB Table

	The ACSTAB Table
	ACSDEF Subtable
	ACSTBL Subtable
	ACSSCHC Subtable †CICS only‡
	TPFXTAB Subtable
	
	Example:
	Important:

	Passing Data
	Overriding Information
	
	Examples:
	Exceptions:

